von Neumann ordinal <mathematics> An implementation of {ordinals} in {set theory} (e.g. {Zermelo Fränkel set theory} or {ZFC}). The von Neumann ordinal alpha is the {well-ordered set} containing just the ordinals "shorter" than alpha. "Reasonable" set theories (like ZF) include Mostowski's Collapsing Theorem: any {well-ordered set} is {isomorphic} to a von Neumann ordinal. In really screwy theories (e.g. NFU -- New Foundations with Urelemente) this theorem is false. The finite von Neumann ordinals are the {von Neumann integers}. (1995-03-30)