from
Jargon File (4.4.4, 14 Aug 2003)
bignum
/big'nuhm/, n.
[common; orig. from MIT MacLISP]
1. [techspeak] A multiple-precision computer representation for very
large integers.
2. More generally, any very large number. "Have you ever looked at the
United States Budget? There's bignums for you!"
3. [Stanford] In backgammon, large numbers on the dice especially a
roll of double fives or double sixes (compare {moby}, sense 4). See
also {El Camino Bignum}.
Sense 1 may require some explanation. Most computer languages provide
a kind of data called integer, but such computer integers are usually
very limited in size; usually they must be smaller than 2^31
(2,147,483,648). If you want to work with numbers larger than that,
you have to use floating-point numbers, which are usually accurate to
only six or seven decimal places. Computer languages that provide
bignums can perform exact calculations on very large numbers, such as
1000! (the factorial of 1000, which is 1000 times 999 times 998 times
... times 2 times 1). For example, this value for 1000! was computed
by the MacLISP system using bignums:
40238726007709377354370243392300398571937486421071
46325437999104299385123986290205920442084869694048
00479988610197196058631666872994808558901323829669
94459099742450408707375991882362772718873251977950
59509952761208749754624970436014182780946464962910
56393887437886487337119181045825783647849977012476
63288983595573543251318532395846307555740911426241
74743493475534286465766116677973966688202912073791
43853719588249808126867838374559731746136085379534
52422158659320192809087829730843139284440328123155
86110369768013573042161687476096758713483120254785
89320767169132448426236131412508780208000261683151
02734182797770478463586817016436502415369139828126
48102130927612448963599287051149649754199093422215
66832572080821333186116811553615836546984046708975
60290095053761647584772842188967964624494516076535
34081989013854424879849599533191017233555566021394
50399736280750137837615307127761926849034352625200
01588853514733161170210396817592151090778801939317
81141945452572238655414610628921879602238389714760
88506276862967146674697562911234082439208160153780
88989396451826324367161676217916890977991190375403
12746222899880051954444142820121873617459926429565
81746628302955570299024324153181617210465832036786
90611726015878352075151628422554026517048330422614
39742869330616908979684825901254583271682264580665
26769958652682272807075781391858178889652208164348
34482599326604336766017699961283186078838615027946
59551311565520360939881806121385586003014356945272
24206344631797460594682573103790084024432438465657
24501440282188525247093519062092902313649327349756
55139587205596542287497740114133469627154228458623
77387538230483865688976461927383814900140767310446
64025989949022222176590433990188601856652648506179
97023561938970178600408118897299183110211712298459
01641921068884387121855646124960798722908519296819
37238864261483965738229112312502418664935314397013
74285319266498753372189406942814341185201580141233
44828015051399694290153483077644569099073152433278
28826986460278986432113908350621709500259738986355
42771967428222487575867657523442202075736305694988
25087968928162753848863396909959826280956121450994
87170124451646126037902930912088908694202851064018
21543994571568059418727489980942547421735824010636
77404595741785160829230135358081840096996372524230
56085590370062427124341690900415369010593398383577
79394109700277534720000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000.
from
The Free On-line Dictionary of Computing (8 July 2008)
bignum
<programming> /big'nuhm/ (Originally from {MIT} {MacLISP}) A
{multiple-precision} computer representation for very large
integers.
Most computer languages provide a type of data called
"integer", but such computer integers are usually limited in
size; usually they must be smaller than 2^31 (2,147,483,648)
or (on a {bitty box}) 2^15 (32,768). If you want to work with
numbers larger than that, you have to use {floating-point}
numbers, which are usually accurate to only six or seven
decimal places. Computer languages that provide bignums can
perform exact calculations on very large numbers, such as
1000! (the factorial of 1000, which is 1000 times 999 times
998 times ... times 2 times 1). For example, this value for
1000! was computed by the {MacLISP} system using bignums:
40238726007709377354370243392300398571937486421071
46325437999104299385123986290205920442084869694048
00479988610197196058631666872994808558901323829669
94459099742450408707375991882362772718873251977950
59509952761208749754624970436014182780946464962910
56393887437886487337119181045825783647849977012476
63288983595573543251318532395846307555740911426241
74743493475534286465766116677973966688202912073791
43853719588249808126867838374559731746136085379534
52422158659320192809087829730843139284440328123155
86110369768013573042161687476096758713483120254785
89320767169132448426236131412508780208000261683151
02734182797770478463586817016436502415369139828126
48102130927612448963599287051149649754199093422215
66832572080821333186116811553615836546984046708975
60290095053761647584772842188967964624494516076535
34081989013854424879849599533191017233555566021394
50399736280750137837615307127761926849034352625200
01588853514733161170210396817592151090778801939317
81141945452572238655414610628921879602238389714760
88506276862967146674697562911234082439208160153780
88989396451826324367161676217916890977991190375403
12746222899880051954444142820121873617459926429565
81746628302955570299024324153181617210465832036786
90611726015878352075151628422554026517048330422614
39742869330616908979684825901254583271682264580665
26769958652682272807075781391858178889652208164348
34482599326604336766017699961283186078838615027946
59551311565520360939881806121385586003014356945272
24206344631797460594682573103790084024432438465657
24501440282188525247093519062092902313649327349756
55139587205596542287497740114133469627154228458623
77387538230483865688976461927383814900140767310446
64025989949022222176590433990188601856652648506179
97023561938970178600408118897299183110211712298459
01641921068884387121855646124960798722908519296819
37238864261483965738229112312502418664935314397013
74285319266498753372189406942814341185201580141233
44828015051399694290153483077644569099073152433278
28826986460278986432113908350621709500259738986355
42771967428222487575867657523442202075736305694988
25087968928162753848863396909959826280956121450994
87170124451646126037902930912088908694202851064018
21543994571568059418727489980942547421735824010636
77404595741785160829230135358081840096996372524230
56085590370062427124341690900415369010593398383577
79394109700277534720000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
000000000000000000.
[{Jargon File}]
(1996-06-27)